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Abstract

Time-reversal symmetric triangular maps of the unit square are introduced
with the property that the time evolution of one of their two variables is
determined by a piecewise expanding map of the unit interval. We study their
statistical properties and establish the conditions under which their equilibrium
measures have a product structure, i.e. factorizes in a symmetric form. When
these conditions are not verified, the equilibrium measure does not have a
product form and therefore provides additional information on the statistical
properties of these maps. This is the case of anti-symmetric cusp maps, which
have an intermittent fixed point and yet have uniform invariant measures on
the unit interval. We construct the invariant density of the corresponding
two-dimensional triangular map and prove that it exhibits a singularity at the
intermittent fixed point.

PACS number: 05.45.Ac

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has long been realized that chaos is a ubiquitous property of nonlinear mechanical systems.
The study of the dynamical properties of higher dimensional systems such as those encountered
in the framework of statistical physics is however difficult from a theoretical standpoint, and
it is therefore rather naturally that the theory of chaotic dynamical systems and their statistical
properties was developed in the framework of low-dimensional systems. The ergodic and
dynamical properties of one-dimensional piecewise expanding maps of the interval have been
extensively studied in this regard [1] and, together with Anosov diffeomorphisms, were central
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to the derivation of some key results, in particular relating to the Sinaı̈–Ruelle–Bowen theory
of natural invariant measures. See references [2, 3].

A central problem in the study of statistical properties of one-dimensional piecewise
expanding maps is the identification of a natural invariant measure. A standard procedure,
which applies to maps with the Markov property, is to establish a correspondence between the
iterations of such maps and shifts on semi-infinite sequences of spin variables. This way the
study of the invariant state of the map reduces to that of the corresponding lattice gas. One
subsequently constructs a time translation invariant state by extending the semi-infinite spin
system to one which is infinite in both directions [4]. As far as the one-dimensional (non-
invertible) map is concerned, one might interpret this procedure as restoring the symmetry
under time reversal. In instances where this procedure can be explicitly carried out at the
level of the map, one obtains a new time-reversal symmetric triangular map on the unit square,
which reduces to the original one-dimensional map after projecting along the appropriate
dimension.

To provide an example, it is well known that the angle-doubling Bernoulli map is
equivalent to a coin-tossing game and that the equiprobability of all sequences of heads
and tails amounts to the invariance of the Lebesgue measure on the interval. Extending the
coin-tossing to memory-keeping doubly-infinite sequences, one realizes that this construction
amounts to associating the Baker map with the angle-doubling map, which is defined on the
square and is time-reversal invariant. See for instance [5]. Note that the invariant density is
uniform, both with the one-dimensional and two-dimensional maps. One might pedantically
say that the invariant density of the two-dimensional map is the product of that of the one-
dimensional map evaluated along the two dimensions of the triangular map. Though this
observation is trivial, it is indeed a case of the triangular map having an invariant density with
what will be referred to as the product structure. This notion will play a central role in our
discussion.

It is our purpose to show how this construction from one- to two-dimensional maps can be
generalized and what properties of the invariant state can be inferred. Under specific symmetry
assumptions on the map of the interval, we associate with it a two-dimensional triangular map
of the unit square symmetric under time reversal. Considering the statistical properties of these
maps, we establish the conditions so that the invariant measure of the triangular map has a
smooth invariant density and identify the necessary and sufficient conditions under which this
invariant density has a product structure in the sense defined above: namely it can be written
as the product of the density associated with the invariant measure of the one-dimensional
map, evaluated along both dimensions.

As we describe below, the case where the invariant measure of the triangular map has a
product form is arguably less interesting than when it does not. The result indeed suggests
that, unless the measure has a product form, a complete statistical study of the expanding map
of the interval requires considering its time-reversible triangular extension to the unit square.
In other words there is more to learn about the statistical properties of one-dimensional map
by studying the statistics of the associated two-dimensional map.

For the sake of illustration, we will consider in some detail a one-parameter class of
time-reversal symmetric triangular map with a cusp. The interesting peculiarity of this class is
that its limit upon variation of the parameter becomes intermittent. Yet all the maps of the class
have equally uniform invariant densities on the unit interval [8]. This seemingly paradoxical
property can be further explained provided one considers the corresponding two-dimensional
triangular map. As it turns out, the invariant measure develops a singularity as the parameter
value tends to the intermittent limit.
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This paper is organized as follows. The class of time-reversal symmetric triangular maps
we will consider is defined in section 2. In section 3, we prove that the invariant measure
of these maps is absolutely continuous. In section 4, we consider the special class of time-
reversal symmetric triangular maps which are diffeomorphically conjugated to maps that
preserve the volume measure and show that this condition is necessary and sufficient for the
invariant measure to have the product form. Section 5 is devoted to a one-parameter class
of time-reversal triangular maps which are generalizations of the one-dimensional cusp maps
and establishes key properties of their equilibrium states.

2. Time-reversible triangular maps of the square

Triangular or skew-product maps of the square are maps F : [0, 1]2 �→ [0, 1]2 of the form
F(x, y) = (f (x), g(x, y)). A familiar such example is the Baker map, which expands the
square horizontally by a factor of 2 and squeezes it vertically by 1/2 so as to preserve areas,
and subsequently folds the two horizontal halves on top of one another, thus recovering the
unit square. Specifically, it is defined according to

B : (x, y) �→
{(

2x,
y

2

)
, 0 � x < 1/2,(

2x − 1,
y+1

2

)
, 1/2 � x < 1.

(1)

An important property of the Baker map is that it is time-reversal symmetric, i.e. there exists
an involution of the unit square, T : [0, 1]2 �→ [0, 1]2 such that

T ◦ B ◦ T = B−1. (2)

The Baker map has actually two such symmetries, which map the square along its respective
diagonals, T1(x, y) = (y, x) and T2(x, y) = (1 − y, 1 − x).

It is the purpose of this paper to establish the statistical properties of triangular maps of the
square which are time-reversal symmetric and can be obtained from the Baker map whether
through conjugation or continuous deformation.

More specifically, we consider maps of the form

F : (x, y) �→
{

(f0(x), g0(y)), 0 � x < 1/2,

(f1(x), g1(y)), 1/2 � x < 1,
(3)

where, on the one hand, f0(x) is twice differentiable, strictly expanding, i.e. f ′
0(x) � α > 1,

with f0(0) = 0, f0(1/2) = 1, and

f1(x) = 1 − f0(1 − x). (4)

The y component of F, on the other hand, is defined through the inverse maps

g0(x) = f −1
0 (x), g1(x) = f −1

1 (x). (5)

By construction, maps (3) have the hyperbolic properties and time-reversal symmetries of the
Baker map.

3. Absolutely continuous measure

Asymptotic statistical properties of maps (3) are determined by absolutely continuous measures
whose densities ρ(x, y) are invariant under the Perron–Frobenius operator

ρ(x, y) = g′
ω(x)f ′

ω(y)ρ(gω(x), fω(y)), (6)

where ω = 0 if 0 � y < 1/2 and ω = 1 if 1/2 � y < 1. This is the content of our first
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Theorem 1. Let F be a triangular map of the square of the form (3), as specified above. The
natural invariant measure of F is unique and absolutely continuous with respect to the volume
measure, with density ρ(x, y) whose marginals are equal,∫ 1

0
dy ρ(x, y) =

∫ 1

0
dy ρ(y, x) ≡ ζ(x), (7)

where ζ(x) is the invariant density of the one-dimensional map of the interval

f (x) =
{
f0(x), 0 � x < 1/2,

f1(x), 1/2 � x < 1.
(8)

To prove this result, we first note that f as defined by (8) is an expanding piecewise C2

map of the interval, so that, by the theorem of Lasota and Yorke [6], there is a unique L1

integrable fixed point of the Perron–Frobenius operator, which we denote ζ(x),

ζ(x) = g′
0(x)ζ(g0(x)) + g′

1(x)ζ(g1(x)). (9)

This ζ(x) is the density associated with the natural invariant measure of f .
By extension, and since F is triangular with f its projection along the unstable direction,

F has a unique Sinai–Ruelle–Bowen measure whose conditional measure along the unstable
direction has density ζ , see [3] for a general discussion. Thus let ρ denote the density
associated with the SRB measure of F. The relation ζ(x) = ∫ 1

0 dy ρ(x, y) ensues.

The second equality of equation (7), namely ζ(y) = ∫ 1
0 dx ρ(x, y), is less immediate and

can be derived starting with (6) evaluated at (x, gω(y)). Integrating over x, we obtain∫ 1

0
dx ρ(x, g0(y)) = f ′

0(g0(y))

∫ 1/2

0
dx ρ(x, y),∫ 1

0
dx ρ(x, g1(y)) = f ′

1(g1(y))

∫ 1

1/2
dx ρ(x, y).

(10)

Using f ′
ω(gω(y)) = 1/g′

ω(y), we can combine these two equations and infer the relation∫ 1

0
dx ρ(x, y) = g′

0(y)

∫ 1

0
dx ρ(x, g0(y)) + g′

1(y)

∫ 1

0
dx ρ(x, g1(y)), (11)

which completes the proof of equation (7).
Its marginals being identical, the invariant density therefore has the symmetries of F,

ρ(x, y) = ρ(y, x) = ρ(1 − y, 1 − x) = ρ(1 − x, 1 − y). (12)

To finish the proof that ρ(x, y) is absolutely continuous, it is sufficient to show that the
phase-space contraction rate of F, or sum of the Lyapunov exponents, vanishes in average.
Let λ+ denote the positive Lyapunov exponent of F, equal to that of f above,

λ+ =
∫ 1/2

0
dx ζ(x) log f ′

0(x) +
∫ 1

1/2
dx ζ(x) log f ′

1(x). (13)

The negative Lyapunov exponent is

λ− =
∫ 1/2

0
dx

∫ 1

0
dy ρ(x, y) log g′

0(y) +
∫ 1

1/2
dx

∫ 1

0
dy ρ(x, y) log g′

1(y). (14)

4



J. Phys. A: Math. Theor. 42 (2009) 035102 V Basios et al

From equation (10) above,
∫ 1/2

0 dx ρ(x, y) = g′
0(y)ζ(g0(y)) and

∫ 1
1/2 dx ρ(x, y) =

g′
1(y)ζ(g1(y)). Therefore

λ− =
∫ 1

0
dx[g′

0(x)ζ(g0(x)) log g′
0(x) + g′

1(x)ζ(g1(x)) log g′
1(x)],

=
∫ 1/2

0
dx ζ(x) log g′

0(f0(x)) +
∫ 1

1/2
dx ζ(x) log g′

1(f1(x)),

= −
∫ 1/2

0
dx ζ(x) log f ′

0(x) −
∫ 1

1/2
dx ζ(x) log f ′

1(x),

= −λ+ (15)

where, in the third line, we used the identity g′
ω(fω(x)) = 1/f ′

ω(x).
Triangular maps constructed upon one-dimensional differentiable expanding maps of the

circle which are symmetric about 1/2 therefore have absolutely continuous invariant measures.
Note that, upon inspection of equation (6), one might be led to believe that ρ(x, y) has

the product structure

ρ(x, y) = ζ(x)ζ(y). (16)

Indeed, since f and g are the inverses of one another, one may substitute gω(z) (ω = 0, 1, 0 �
z < 1) for y in equation (6) and write

g′
ω(z)ρ(x, gω(z)) = g′

ω(x)ρ(gω(x), z). (17)

This equation is symmetric between x and z, except for the value of ω, which is determined
according to that of y:

ω = 0, 0 � y < 1/2,

ω = 1, 1/2 � y < 1.
(18)

Therefore the product form (16) is in general invalid, unless equation (17) is independent of
z, which requires the identity

g′
0(z)ζ(g0(z)) = g′

1(z)ζ(g1(z)). (19)

As we will demonstrate shortly it is easy to find maps F of the form (3) which do not
verify this property and consequently do not have a product measure.

The question which we address in the following section is to determine under which
conditions the density ρ(x, y) has the product form (16).

4. Diffeomorphic conjugations

An example of a non-trivial two-dimensional map for which equation (19) holds is that of the
anti-symmetric logistic map. Let f0(x) = 4x(1 − x) and f1 defined as in equation (37). The
inverses are g0(x) = 1/2(1 − √

1 − x) and g1(x) = 1/2(1 +
√

x) respectively. The invariant
density of the one-dimensional map (8) is ζ(x) = 1/[π

√
x(1 − x)] and one easily checks that

ρ(x, y) = ζ(x)ζ(y) verifies equation (6).
This property can be understood as a consequence of the diffeomorphic conjugation of

the map above to the Baker map. As is well known [7], the one-dimensional logistic map
above can be obtained from the angle doubling map by a conjugation,

f (x) = φ−1(2φ(x) mod 1), (20)

where φ(x) = 1 − 2/π arccos
√

x, with inverse φ−1(x) = cos2[π(1 − x)/2], and such that
φ′(x) = ζ(x).

5
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We now go on to establish the generality of this result. Thus consider F as defined in (3)
and let φ be a diffeomorphism of the unit interval with positive derivative. Set φ′(x) ≡ σ(x);
σ is a positive density. Consider now the function

F̂ (x, y) =
{
(φ ◦ f0 ◦ φ−1(x), φ ◦ g0 ◦ φ−1(x)), 0 � x < 1/2,

(φ ◦ f1 ◦ φ−1(x), φ ◦ g1 ◦ φ−1(x)), 1/2 � x < 1.
(21)

We further set f̂ω ≡ φ ◦ fω ◦ φ−1 and ĝω ≡ φ ◦ gω ◦ φ−1, ω = 0, 1.

Lemma 2. Let PF and PF̂ denote the Perron–Frobenius operators corresponding to F and F̂

respectively. Then

PF η(x, y) = P−1
φ [PF̂ (Pφη)(x, y)], (22)

where

Pφη(x, y) = η(φ−1(x), φ−1(y))

σ (φ−1(x))σ (φ−1(y))
. (23)

We have ∫ x

0
ds

∫ y

0
dt PF η(s, t) =

∫ ∫
F−1([0,x]×[0,y])

ds dt η(s, t), (24)

where

F−1([0, x] × [0, y]) =

⎧⎪⎨⎪⎩
[0, g0(x)] × [0, f0(y)], 0 � y < 1/2,

[0, g0(x)] × [0, 1]

∪[1/2, g1(x)] × [0, f1(y)], 1/2 � y < 1.

(25)

Assuming 0 � y < 1/2, we can write∫ x

0
ds

∫ y

0
dt PF η(s, t) =

∫ g0(x)

0
ds

∫ f0(y)

0
dt η(s, t),

=
∫ φ−1◦̂g0◦φ(x)

0
ds

∫ φ−1◦f̂0◦φ(y)

0
dt η(s, t). (26)

Setting s = φ−1(u) and t = φ−1(v), the Jacobian of the transformation is J = φ′(s)φ′(t) =
σ(s)σ (t), so that the last integral can be rewritten∫ ĝ0◦φ(x)

0
du

∫ f̂0◦φ(y)

0
dv

η(φ−1(u), φ−1(v))

σ (φ−1(u))σ (φ−1(v))
=

∫ ĝ0◦φ(x)

0
du

∫ f̂0◦φ(y)

0
dv Pφη(u, v),

=
∫ φ(x)

0
du

∫ φ(y)

0
dv PF̂ (Pφη)(u, v),

=
∫ x

0
ds

∫ y

0
dt P−1

φ [PF̂ (Pφη)(s, t)]. (27)

This result holds for every η ∈ L1. We have therefore derived the relation

PF η(x, y) = P−1
φ [PF̂ (Pφη)(x, y)]. (28)

The same relation holds for 1/2 � y < 1.

Theorem 3. The invariant density ρ(x, y) of F has the product form

ρ(x, y) = σ(x)σ (y) = φ′(x)φ′(y) (29)

if and only if F̂ , which is obtained from the conjugation of F and φ, is measure-preserving,
i.e. F̂ has uniform invariant density, PF̂ 1 = 1.

6
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We have

Pφ(σ (x)σ (y)) = σ(φ−1(x))σ (φ−1(y))

σ (φ−1(x))σ (φ−1(y))
= 1. (30)

Thus, by the previous lemma,

PF (σ (x)σ (y)) = P−1
φ [PF̂ (Pφσ (x)σ (y))],

= P−1
φ [PF̂ 1],

= P−1
φ 1,

= σ(x)σ (y). (31)

The converse is true. Assume that F has invariant density ρ(x, y) = ζ(x)ζ(y) and
consider the homeomorphism

φ(x) =
∫ x

0
ds ζ(s). (32)

Then

Pφρ(x, y) = ζ(φ−1(x))ζ(φ−1(y))

ζ(φ−1(x))ζ(φ−1(y))
= 1. (33)

Let F̂ be the function constructed from F and the homeomorphism φ. We then have

ζ(x)ζ(y) = PF (ζ(x)ζ(y)),

= P−1
φ [PF̂ 1]. (34)

Assume that PF̂ 1 ≡ d(x, y) 
= 1. Then

ζ(x)ζ(y) = d(φ(x), φ(y))ζ(x)ζ(y), (35)

a contradiction.
The invariant measures of maps that are conjugated to piecewise linear maps such as

the Baker map have therefore a product structure. And, conversely, a map whose invariant
measure has a product structure is conjugated to a piecewise linear map by a diffeomorphism
whose derivative is equal to the marginals of its probability density.

In the following section, we turn to a one-parameter family of maps (3) that does not
have this property. They are obtained by continuous deformation of Baker maps and, as the
parameter is varied, have a singular limit which displays intermittency. As it will turn out, the
marginals are uniform for all values of the parameter, yet the measure develops a singularity
as one approaches the intermittent regime.

5. Cusp maps

We consider a two-dimensional extension of a class of anti-symmetric cusp maps, whose
symmetric version was previously introduced in [8]. Let 0 < a � 1. We define

f
(a)
0 (x) = a + 1

2a

[
1 −

√
1 − 8ax

(a + 1)2

]
, (36)

for 0 � x � 1/2, and

f
(a)
1 (x) = 1 − f

(a)
0 (1 − x), (37)

for 1/2 � x � 1. The class of anti-symmetric cusp maps of the interval is defined by

f (a) : x �→
{

f
(a)
0 (x), 0 � x � 1/2,

f
(a)
1 (x), 1/2 < x � 1.

(38)

Figure 1 displays several of these functions as the parameter a is varied between 0 and 1.
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0
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a 0

a 1

Figure 1. Anti-symmetric cusp maps (38), here shown for a = 0, 1/5, . . . , 1.

The inverses of f
(a)
0 and f

(a)
1 are

g
(a)
0 (x) ≡ f

(a)
0

−1 = 1 + a

2
x − a

2
x2,

g
(a)
1 (x) ≡ f

(a)
1

−1 = 1

2
+

1 − a

2
x +

a

2
x2.

(39)

An immediate property of the Perron–Frobenius operators attached to the maps (38) is
that they preserve the Lebesgue measure and therefore have uniform density, irrespective of
the value of a. This follows from equation (9) and the identity

g
(a)
0

′
(x) + g

(a)
1

′
(x) = a + 1

2
− ax + ax +

1 − a

2
= 1, (40)

where the prime indicates the derivative with respect to the argument. Thus the computation
of the positive Lyapunov exponent is straightforward and yields

λ(a)
+ = log 2 +

1

2
+

(1 − a)2

4a
log(1 − a) − (1 + a)2

4a
log(1 + a). (41)

In particular λ
(0)
+ = log 2 and λ

(1)
+ = 1/2.

The specificity of the maps f (a) thus defined is that they can be viewed, as one tunes
the value of the parameter a from 0 to 1, as continuous deformations of the angle-doubling
map, x �→ 2x if 0 � x < 1/2, or 2x − 1 if 1/2 � x < 1, to the intermittent anti-symmetric
cusp map, x �→ 1 − √

1 − 2x or
√

2x − 1, depending on whether x < 1/2 or x � 1/2. The
latter case is weakly intermittent in the sense that the slope of f (1) at x = 0 is unity, and yet
the invariant density is constant and therefore shows no sign of the singularity that underlies
the intermittency of its statistical observables. Nevertheless this regime is characterized by the
power law decay of correlation functions, which stems from the existence of an accumulation
of the eigenvalue spectrum of the Frobenius–Perron operator towards the eigenvalue 1, which
corresponds to the stationary state. See [9–14] for the treatment of the symmetric case.

In order to display the effect of the arising intermittency as a → 1 on the statistical
properties of trajectories driven by the maps (38) and the singularity of the invariant measure

8
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in the intermittent regime (a = 1), one needs to consider the two-dimensional extension of
f (a) to time-reversible triangular maps, defined in accordance with equation (3):

F (a) : (x, y) �→
{(

f
(a)
0 (x), g

(a)
0 (y)

)
, 0 � x � 1/2,(

f
(a)
1 (x), g

(a)
1 (y)

)
, 1/2 < x � 1.

(42)

By construction, F (a), except at a = 1, has the properties studied in section 3 and, in
particular, verifies theorem 1, asserting that the invariant density is smooth, with both marginals
trivial. In particular λ

(a)
− = −λ

(a)
+ .

From equation (6), the invariant density verifies the functional equation

ρa(x, y) =

⎧⎪⎪⎨⎪⎪⎩
1+a−2ax√
(1+a)2−8ay

ρa

(
1+a

2 x − a
2 x2,

1+a−
√

(1+a)2−8ay

2a

)
, 0 � y � 1/2,

1−a+2ax√
(1+a)2−8a(1−y)

ρa

(
1
2 + 1−a

2 x + a
2 x2,

√
(1+a)2−8a(1−y)−1+a

2a

)
, 1/2 � y � 1.

(43)

A remarkable property of ρa , that can be seen in figure 2, is that it develops a singularity
at the origin as a → 1.

In order to prove this assertion, we consider the partial cumulative function

ra(x, y) ≡
∫ y

0
dy ρa(x, y). (44)

From equation (43), we obtain the following functional equation for this quantity:

ra(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1+a
2 − ax

)
ra

(
1+a

2 x − a
2 x2,

a+1−
√

(1+a)2−8ay

2a

)
, 0 � y � 1/2,

1+a
2 − ax +

(
1−a

2 + ax
)
ra

(
1
2 + 1−a

2 x + a
2 x2,

√
(1+a)2−8a(1−y)−1+a

2a

)
,

1/2 � y � 1.

(45)

By construction, we have the properties

ra(x, 1) = 1, (46)∫ 1

0
dx ra(x, y) = y. (47)

Numerical computations of these quantities are displayed in figure 3.
The functional equation (45) has a form suited to the computation of the invariant state.

Indeed, using equation (46), we can infer the expressions of ra(x, y) at the points y which are
pre-images of y = 1 with respect to f (a)

ω , ω = 0, 1. In particular, it is immediate to see that

ra(x, 1/2) = g
(a)
0

′
(x) = (1 + a)/2 − ax. In general, the pre-images of y = 1 are the points

g(a)
ωn

(1) ≡ g(a)
ωn

◦ · · · ◦ g(a)
ω1

(1), where ωn is a compact notation for the sequence of n digits

ωi, ωi = 0 or 1 according to which branch g
(a)
0 or g

(a)
1 is to be iterated.

Lemma 4. Fix 0 < a < 1. Given any y0 in the unit interval and ε � 1, one can find an
integer n and a sequence ωn such that g(a)

ωn
(1) ∈ (y0 − ε, y0 + ε).

The proof is a consequence of the existence of Markov partitions for the maps (38), a < 1,
and relies on the contraction of the inverses, g

(a)
0

′
(x) < 1 and g

(a)
1

′
(x) < 1.

This implies that ra(x, y), for fixed x and a < 1, is completely determined by
equation (45).
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Figure 2. Numerical computations of the invariant density ρa(x, y), where a takes the values
a = 0.1, 0.5, 0.9, and 1, from left to right and top to bottom. These histograms are computed from
time series of many trajectories with initial conditions uniformly distributed over the square. The
grid size is 300 × 300 cells, except for the last one which uses a grid of 1000 × 1000 cells. The
colour code (grayscale) uses a logarithmic scale, different for each plot, i.e. the legends refer to
the natural logarithms of the density values. The lower left and upper right corners correspond to
higher densities, the lower right and upper left corners to lower densities.

We are specifically interested in those pre-images of y = 1, which lay closest to the
origin, i.e. y = g

(a)
0 ◦ · · · ◦ g

(a)
0 (1). Thus considering the left branch of equation (45), we have

ra

(
x, g

(a)
0n

(1)
) = g

(a)
0

′
(x)ra

(
g

(a)
0 (x), g

(a)
0n−1

(1)
)
,

=
n−1∏
k=0

g
(a)
0

′(
g

(a)
0k

(x)
)
,

= ra

(
x, g

(a)
0n−1

(1)
)
g

(a)
0

′(
g

(a)
0n−1

(x)
)
,

= ra

(
x, g

(a)
0n−1

(1)
) (

a + 1

2
− ag

(a)
0n−1

(x)

)
. (48)

These steps easily generalize to any symbolic sequence ωn for which we can write

ra(x, g(a)
ωn

(1)) = g(a)
ωn

′
(x)ra

(
g(a)

ωn
(x), g(a)

ωn−1
(1)

)
+ ωng

(a)
1−ωn

′(x). (49)

Thus, fixing x and starting at y = 1, we can use the above equations to compute points on the
curves displayed on the right panels of figure 3.
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Figure 3. Cumulative functions ra(x, y) versus y, with a = 0.1, 0.5, 0.9 and 1, from top to bottom
and left to right. The different curves correspond to different values of x uniformly spread over the
interval, excluding x = 0 and x = 1. The curves are ordered with growing values of x from right
to left.

Setting x = 0 in equation (49), we have

ra

(
0, g(a)

ωn
(1)

) = g(a)
ωn

′
(0)ra

(
g(a)

ωn
(0), g(a)

ωn−1
(1)

)
+ ωng

(a)′
1−ωn

(0). (50)

Thus

ra

(
0, g(a)

ωn
(1)

) =
{

a+1
2 ra

(
0, g(a)

ωn−1
(1)

)
, ωn = 0,

a−1
2 ra

(
1
2 , g(a)

ωn−1
(1)

)
+ a+1

2 , ωn = 1.
(51)

Taking the limit as a → 1, we have

r1
(
0, g(1)

ωn
(1)

) =
{
r1

(
0, g(1)

ωn−1
(1)

)
, ωn = 0,

1, ωn = 1.
(52)

Both these two alternatives yield

r1
(
0, g(1)

ωn
(1)

) = 1. (53)

Indeed, if one amongst the ωn−1, . . . , ω1 is equal to 1, the first alternative eventually reduces
to the second; if on the other hand ωn = 0n, we get

r1
(
0, g

(1)
0n

(1)
) = r1

(
0, g

(1)
0 (1)

) = 1. (54)
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Thus

lim
a→1

ra(0, y) = 1, (55)

and, in particular r1(0, 0) = 1. Therefore, in the intermittent regime, a = 1, the invariant
density has a singularity at the origin,

r1(x, 0) =
{

1, x = 0,

0, x > 0,
(56)

which is otherwise absent in the hyperbolic regime, a < 1, for which we have ra(x, 0) = 0,

x = 0 included.
The latter property can easily be checked using simple arguments. Indeed the density at

the origin is

ρa(0, 0) = lim
n→∞

ra

(
0, g

(a)
0n+1

(1)
) − ra

(
0, g

(a)
0n

(1)
)

g
(a)
0n+1

(1) − g
(a)
0n

(1)
,

= lim
n→∞

(1 − a)ra

(
0, g

(a)
0n

(1)
)

(1 − a)g
(a)
0n

(1) + a
[
g

(a)
0n

(1)
]2 ,

= lim
n→∞

ra

(
0, g

(a)
0n

(1)
)

g
(a)
0n

(1)
,

= lim
n→∞

[(1 + a)/2]n

g
(a)
0n

(1)
(57)

which, as proven in [15, theorem 2.1], exists and is finite for a < 1. Furthermore, we expect,
though we have no formal proof of this result at this point, that, as a → 1, ρa(0, 0) diverges
as 1/(1 − a).

6. Conclusions

In this paper, we considered the smooth invariant statistics of time-reversal symmetric
triangular maps of the unit square built upon anti-symmetric piecewise expanding maps of the
unit interval.

We showed that maps which are diffeomorphically conjugated to piecewise linear maps
have an equilibrium state with the product form, simply expressed as the product of the
derivative of the conjugating map, evaluated at the two variables.

Maps whose invariant state has the product form are therefore exceptional. For piecewise
expanding maps that are not diffeomorphically conjugated to piecewise linear maps, a thorough
study of their statistical properties can only be properly accomplished provided one considers
the map from the interval to the square thus recovering a time-reversal symmetric map.

The example of the class of anti-symmetric cusp maps considered in this paper is revealing
in that respect. Though the natural invariant measures of the one-dimensional maps of this
class have uniform densities, even in the intermittent regime, the equilibrium state of the
associated time-reversible two-dimensional map displays a singularity at the intermittent fixed
point.

In the non-equilibrium physics literature, time-reversible systems submitted to non-
holonomic constraints have been considered in the context of non-equilibrium molecular
dynamics. Methods were developed over the last decades using iso-kinetic thermostats
under Gauss’s principle of least constraint [16], or Nosé–Hoover thermostats [17]. The
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interesting point with regard to the results presented in this paper is that the equilibrium
states of systems subjected to such non-holonomic constraints are not uniform. This happens
because phase-space volumes are not preserved pointwise, though, in average, they are [18].
These equilibrium states therefore share the properties of the invariant measures of the maps
considered in this paper. Our results suggest that these states will in general not be factorizable
and display a rich structure.
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